论文部分内容阅读
本文综述了贝尔实验室在应用计算机方面的经验,包括模拟和设计、数据采集、数据分析、元件选择和其它各种各样的工作。过去,石英晶体振荡器可以很容易地应用线性电路模型来模拟。虽然存在非线性模型(例如,Spicc.Capitol等),但它们不能被用来对晶体振荡器进行闭环分析,因为其中包括有高Q参数。然而最近Waterloo大学研究的WATAND程序已变得很有效并可适用于石英晶体振荡器的闭环非线性分析。在贝尔实验室,线性和非线性两种分析程序正用于评价新设计,同时特别注意元件变化对工艺的影响。计算机完成原始数据采集任务的方法是对温度补偿晶体振荡器进行频率温度测量。附加的应用是对振荡器进行最后的室温检验,以便确定波形特征、功率损耗、电源灵敏性和频率牵引范围(对于压控晶体振荡器)。应用实时元件选择的方法有助于把电阻组合选择来与根据温度试验数据的分析所确定的数值相适应。在压控晶体振荡器和温度补偿压控晶体振荡器中,用实时元件选择的方法来调整变容二极管的工作点,使频率一电压牵引特性最佳。其他应用包括:对性能数据进行统计分析,以便于计划产量;使用模-数和数-模变换器模拟数字补偿流程图来与以微处理器为基础的计算机相对接,以及模拟双转角晶体切型的温度特性。
This article summarizes Bell Labs experience in applying computers, including simulation and design, data acquisition, data analysis, component selection, and a variety of other tasks. In the past, quartz crystal oscillators could be modeled easily using linear circuit models. Although nonlinear models exist (eg, Spicc. Capitol, etc.), they can not be used to perform closed-loop analysis of crystal oscillators because of the high Q-parameters involved. However, the WATAND program recently studied by the University of Waterloo has become very effective and can be applied to closed-loop nonlinear analysis of quartz crystal oscillators. At Bell Laboratories, both linear and nonlinear analytical procedures are being used to evaluate new designs, paying special attention to the effects of component changes on the process. Computer to complete the task of the original data acquisition task is to temperature-compensated crystal oscillator frequency temperature measurement. An additional application is the final room temperature test of the oscillator to determine the waveform characteristics, power loss, power supply sensitivity, and frequency pull range (for voltage-controlled crystal oscillators). The method of applying real-time component selection helps to select the resistance combination to suit the value determined from the analysis of the temperature test data. In the voltage-controlled crystal oscillator and temperature-compensated voltage-controlled crystal oscillator, the real-time component selection method to adjust the working point of the varactor diode, the frequency-voltage traction characteristics of the best. Other applications include: Statistical analysis of performance data to facilitate production planning; Use of analog-to-digital and digital-to-analog converters to simulate digital compensation flowcharts to interface with microprocessor-based computers; and Simulation of double- Type of temperature characteristics.