论文部分内容阅读
局部放电检测是目前电力设备状态评价的主要手段,得到广泛应用推广。由于缺陷图谱的复杂性及现场干扰的多样性,传统的局部放电模式识别方法正确率低,且训练时间长。针对上述问题,文章提出了一种基于图像处理技术及数据深度稀疏降噪的电力设备局部放电图谱智能识别方法。首先,运用图像处理技术对检测得到的图谱进行预处理;然后利用深度稀疏降噪自编码器进行数据稀疏降噪;最后对得到的有效去噪的数学模型,利用极限学习机(ELM,Extreme Learning Machine)网络,实现对局部放电的智能分类和识别。利用在变电站