论文部分内容阅读
为了解决云台摄像机的行人跟踪问题,提出了一种基于粒子滤波的行人跟踪算法.该方法在目标灰度模板以外,学习并更新行人目标的轮廓模板.考虑到行人轮廓因为视角变化可能发生的突然改变,算法准备了多套从不同视角观测的轮廓模板,并且逐渐更新它们使之可以逐渐捕捉目标的轮廓特征.在多段云台摄像机拍摄的监控视频上测试了所提出的算法.实验结果显示,该算法比其他先进的跟踪算法有更长的准确跟踪时间.