论文部分内容阅读
对一类由n个方程组成的M onge-A mpère系统,证明其非线性项为一般函数时该Monge-Ampère系统解的存在性.首先,在径向解的支撑下,通过一个巧妙的变换将Monge-Ampère系统转化为一个与之等价常微分方程系统;其次,在适当的Banach空间中,构造相应的非负锥和全连续算子;最后,利用锥上的不动点指数理论,在单位球内研究常微分方程系统正解的存在性.进一步得到了原Monge-Ampère系统非平凡径向凸解的存在性,并证明了在非线性项为超线性或次线性情况下,原Monge-Ampère系统至少存在一个非平凡径向凸解.