论文部分内容阅读
This study analyses evidence for reformed basin development and basin-mountain coupling associated with development of the Ordos Basin and the Lüliang Mountains, China. Gaining an improved understanding of the timing and nature of uplift and evolution of the Lüliang Mountains is important for the reconstruction of the eastern sedimentary boundary of the Ordos Basin(a major petroliferous basin) as well as for providing insight into the evolution and breakup of the North China Craton(NCC). Based on systematic sampling for fission track analysis, it is suggested that the main phase of uplift of the Lüliang Mountains occurred since later part of the Early Cretaceous. Three evolutionary stages of uplift and development are identified: slow initial uplift(120–65 Ma), accelerated uplift(65–23 Ma), and intensive uplift(23 Ma to present), with the majority of the uplift activity having occurred during the Cenozoic. The history of uplift is non-equilibrium and exhibits complexity in temporal and spatial aspects. The middle and northern parts of the Lüliang Mountains were uplifted earlier than the southern part. The most intensive episode of uplift activity commenced in the Miocene and was associated with a genetic coupling relationship with the eastern neighboring Cenozoic Shanxi Grabens. The uplifting and evolutionary processes of the Lüliang Mountains area since later part of the Early Cretaceous share a unified regional geodynamic setting, which was accompanied by uplift of the Mesozoic Ordos Basin and development of the neighboring Cenozoic Shanxi Grabens. Collectively, this regional orogenic activity is related principally to the far-field effects of both the compression sourced from the southwestern Tibet Plateau and westward subduction of the Pacific Plate in Cenozoic.
This study analyzes the evidence for reformed basin development and basin-mountain coupling associated with development of the Ordos Basin and the Lüliang Mountains, China. Gaining an improved understanding of the timing and nature of uplift and evolution of the Lüliang Mountains is important for the reconstruction of the eastern sedimentary boundary of the Ordos Basin (a major petroliferous basin) as well as for providing insight into the evolution and breakup of the North China Craton (NCC). Based on systematic sampling for fission track analysis, it is suggested that the main phase of uplift of the Lüliang Mountains occurred since later part of the Early Cretaceous. Three evolutionary stages of uplift and development are identified: slow initial uplift (120-65 Ma), accelerated uplift (65-23 Ma), and intensive uplift (23 Ma to present), with the majority of the uplift activity having occurred during the Cenozoic. The history of uplift is non-equilibrium and exhibits complexity in tempo ral and spatial aspects. The middle and northern parts of the Lüliang Mountains were uplifted earlier than the southern part. The most intensive episode of uplift activity commenced in the Miocene and was associated with a genetic coupling relationship with the eastern neighboring Cenozoic Shanxi Grabens. uplifting and evolutionary processes of the Lüliang Mountains area later part of the Early Cretaceous share a unified regional geodynamic setting, which was accompanied by uplift of the Mesozoic Ordos Basin and development of the neighboring Cenozoic Shanxi Grabens. Collectively, this regional orogenic activity is related principally to the far-field effects of both the compression sourced from the southwestern Tibet Plateau and westward subduction of the Pacific Plate in Cenozoic.