论文部分内容阅读
针对传统相似度忽略用户局部偏好、用户评分差异和非共同评分项等因素的影响,提出了一种基于损失因子和数据集划分的协同过滤推荐算法.算法根据用户对项目的偏好度来划分数据集,并提出用两个修正因子来改进传统的相似度.在MovieLens数据集上将所提算法和Pearson算法、参考文献[1]中的算法进行比较,实验结果表明,基于损失因子和数据集划分的协同过滤推荐算法更明显地降低了MAE值.