论文部分内容阅读
AIM:To investigate the protective effects of magnolol on sepsis-induced inflammation and intestinal dysmotility.METHODS:Sepsis was induced by a single intraperitoneal injection of lipopolysaccharide (LPS).Male Wistar rats were randomly assigned to one of three treatment groups:magnolol prior to LPS injection (LPS/Mag group);vehicle prior to LPS injection (LPS/Veh group);vehicle prior to injection of saline (Control/Veh).Intestinal transit and circular muscle mechanical activity were assessed 12 h after LPS injection.Tumor necrosis factor-a (TNF-α),interleukin-10 (IL-10),monoo/te chemoattractant protein-1 (MCP-1) and inducible nitric oxide synthase (iNOS) mRNA in rat ileum were studied by RT-PCR 2 h after LPS injection.Nuclear factor-KB (NF-Kβ) activity in the intestine was also investigated at this time using electrophoretic mobility shift assay.In addition,antioxidant activity was determined by measuring malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity in the intestine 2 h after LPS injection.RESULTS:Magnolol significantly increased intestinal transit and circular muscle mechanical activity in LPS-treated animals.TNF-α,MCP-1 and iNOS mRNA expression in the small intestine were significantly reduced after magnolol treatment in LPS-induced septic animals,compared with untreated septic animals.Additionally,magnolol significantly increased IL-10 mRNA expression in septic rat ileum.Magnolol also significantly suppressed NF-kβ activity in septic rat intestine.In addition,magnolol significantly decreased MDA concentration and increased SOD activity in rat ileum.CONCLUSION:Magnolol prevents sepsis-induced suppression of intestinal motility in rats.The potential mechanism of this benefit of magnolol appears to be modulation of self-amplified inflammatory events and block of oxidative stress in the intestine.