论文部分内容阅读
设G是Banach空间X的闭子集.G称为在X中是联合可逼近的(simultaneously proximinal),如果对每个有界集A X,都存在g∈G,使得d(A,G)≡inf_(u∈G)sup_(a∈A)‖a-u‖=sup_(a∈A)‖a-g‖.证明了Banach空间中的弱紧凸集与联合可逼近凸集的和是联合可逼近的.作为推论,证明了对于Banach空间X的自反子空间F和联合可逼近子空间G,如果F+G是闭的,则F+G是联合可逼近的.