Diverse morphologies of zinc oxide nanoparticles and their electrocatalytic performance in hydrogen

来源 :能源化学 | 被引量 : 0次 | 上传用户:lsy0718
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Hydrogen is considered an attractive alternative to fossil fuels,but only a small amount of it is produced from renewable energy,making it not such a clean energy carrier after all.Producing hydrogen through water electrolysis is promising,but using a cost-effective and high-performing catalyst that has longterm stability is still a challenge.This study exploits,for the first time,the potential of zinc oxide nanoparticles with diverse morphologies as catalysts for the electrocatalytic production of hydrogen from water.The morphology of the nanoparticles (wires,cuboids,spheres) was easily regulated by changing the concentration of sodium hydroxide,used as the shape controlling agent,during the synthesis.The spherical morphology exhibited the highest electrocatalytic activity at the lowest potential voltage.These spherical nanoparticles had the highest number of oxygen vacancies and lowest particle size compared to the other two morphologies,features directly linked to high catalytic activity.However,the nanowires were much more stable with repeated scans.Density-functional theory showed that the presence of oxygen vacancies in all three morphologies led to diminished band gaps,which is of catalytic interest.
其他文献
With the rapid exhaustion of fossil energy, the demand for clean and renewable energy is urgently growing. Thermoelectric(TE) materials, which can directly convert waste heat into electrical energy, are attracting great attention to address the energy cri
With the development of stable alkali metal anodes,V2O5 is gaining traction as a cathode material due to its high theoretical capacity and the ability to interc
A composite In-Pb:carbon was successfully synthetized by a two-step mechanochemical synthesis in order to obtain an adequate particles size and structure to inv
A controllable crystallization is of practical importance to produce high-quality perovskite thin films with reduced structural defects.Lewis bases as electron-
Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are consid-ered as the next-generation battery technology for energy deman
Three-dimensional (3D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp3-like defect struct
Ni-rich cathodes exhibit appealing properties,such as high capacity density,low cost,and prominent energy density.However,the inferior ionic conductivity and bu
Lithium metal,as the most ideal anode material for high energy density batteries,has been researched for several decades.However,the dendrite formation and larg
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SE
Lithium-sulfur(Li-S) battery is regarded as one of the most fascinating candidates for energy storage due to its dominant advantage of high energy density.However,the shuttling effect of soluble polysulfides and low electrical conductivity of sulfur and L