论文部分内容阅读
为了有效地评测人的驾驶精神疲劳状态,本文提出了一种基于核学习算法的精神疲劳分级方法。该方法首先用多变量自回归模型(MVAR)提取位于前额、顶叶、枕叶共6个通道的多维脑电信号特征组成特征向量。然后用核主分量分析(KPCA)和优化支持向量机(SVM)对基于脑电信号(EEG)的驾驶精神疲劳进行分级。经过对3位受试者在3个状态下的驾驶精神疲劳进行分类,平均分类精度达到89.47%。分析显示,应用KPCA并结合优化SVM方法有效地降低了特征空间的维数,可实现较高精度的驾驶精神疲劳分级。