论文部分内容阅读
针对鲁棒主成分分析模型RPCA(robust principle component analysis)未能有效地利用相邻两帧具有相似性这一特性,提出基于帧间相似性约束鲁棒主成分分析模型的运动目标检测算法。考虑到时间序列数据中相邻数据之间的相似性特性,在原始的RPCA模型基础上,引入帧间相似性约束条件,通过求解新的RPCA模型可以得到平滑的低秩数据矩阵和稀疏误差矩阵,有效保留了原有序列数据中的相似性结构。将该模型用于运动目标检测,观测图像序列分解成低秩背景矩阵和稀疏运动目标矩阵,对分解出的运动目标进