论文部分内容阅读
讨论半素环和有单位元环的交换性,用较初等的方法证明如下两个定理,并利用这两个定理对近期的一些结果作了推广。定理1.1环R为无零因子环,m和n为给定自然数且m>n.若有x ̄m-x ̄n∈Z(R),则R可换。定理2.2环R有单位元,m,n为正整数。设(Ⅰ)设m_i,n_i(i=1,2…,k)为非负整数,满足:且存在i,j使i>j而m_in_j≠0.若R为l-扭自由的,且都有:则R可换。(Ⅱ)若有,其中m_1+m_2=m,n_1+n_2=n,m_1,m_2,n_1,n_2为自然数,且R为h-扭自由的,则R可换。