论文部分内容阅读
The structural coupling is a common geological phenomenon. The structural differences between eastern and western active continental margins of modern Pacific and between paleo-Pacific and modern-Pacific continental margins are related to the characteristics and status of the subducting oceanic plate, namely, 1. subducting angle; 2. change in subducting angle; 3. subducting velocity; 4. change in subducting velocity; 5. subduction depth; 6. horizontal distance between the leading edge of the subducting plate and the trench; 7. the structural form of the subducting plate at the 670kin boundary between the upper and lower mantle; 8. the displacement and the direction of displacement of subducting plate. The control and influence toward the shallow-level structures by the deep-level structural activities is a detailed representation of the structural coupling on active continental margin. The basin-maintain coupling phenomenon is an intracontinental structural coupling. The far field effect of collision be
The structural coupling is a common geological phenomenon. The structural differences between eastern and western active continental margins of modern Pacific and between paleo-Pacific and modern-Pacific continental margins are related to the characteristics and status of the subducting oceanic plate, namely, 1. subducting angle; 2. change in subducting angle; 3. subducting velocity; 4. change in subducting velocity; 5. subduction depth; 6. horizontal distance between the leading edge of the subducting plate and the trench; 7. the structural form of the subducting plate at the 670kin boundary between the upper and lower mantle; 8. the displacement and the direction of displacement of subducting plate. The control and influence toward the shallow-level structures by the deep-level structural activities is a detailed representation of the structural coupling on active continental margin. The basin-maintain coupling phenomenon is an intracontinental structural coupling. The far field effe ct of collision be