论文部分内容阅读
Late-stage is defined here as the period when Neotectonism occurred since 5.1 Ma. Most petroliferous basins in China lie in the areas where Neotectonism occurred intensively. In recent years, Chinese petroleum geologists have paid much attention to late-stage petroleum accumulation. The PL19-3 giant oilfield is situated where faulting activities occurred violently during Neotectonism. To understand the mechanism of lat-stage rapid accumulation, we discussed the most important aspects responsible for the formation of the giant oilfield, including oil generation, active oil-source rock occurrence, fault activity and fault conduits, late-stage rapid oil injection as well as the distinguishing indicators. This study shows that: (1) sufficient oil was supplied to the PL19-3 field since 5.1 Ma because the PL19-3 structure was surrounded by four sags in which three intervals of high-quality source rocks remained active during Neotectonism; (2) densely distributed faults and high porosity/permeability sandstone carrier beds comprised the effective conduit system for oil migration and injection; (3) oil migrated along the faults and charged the PL19-3 structure rapidly by means of seismic pumping which was triggered by frequent earthquakes during Neotetonism. It is documented that elevated reservoir temperature, abnormal geothermal gradients and abnormally high homogenization temperatures of the fluid inclusions are the indicators for late-stage rapid oil accumulation.
Late-stage is defined here as the period when Neotectonism occurred 5.1 Ma. Most petroliferous basins in China lie in the areas where Neotectonism occurred intensively. In recent years, Chinese petroleum geologists have paid much attention to late-stage petroleum accumulation. The PL19 -3 giant oilfield is situated where faulting activities occurred violently during Neotectonism. We understand that the most important aspects responsible for the formation of the giant oilfield, including oil generation, active oil-source rock occurrence , fault activity and fault conduits, late-stage rapid oil injection as well as the distinguishing indicators. This study shows that: (1) sufficient oil was supplied to the PL19-3 field since 5.1 Ma because the PL19-3 structure was surrounded by four sags in which three intervals of high-quality source rocks remained active during Neotectonism; (2) densely distributed faults and high porosity / perm (3) oil migrated along the faults and charged the PL19-3 structure rapidly by means of seismic pumping which was triggered by frequent earthquakes during Neotetonism. It is documented that elevated reservoir temperature, abnormal geothermal gradients and abnormally high homogenization temperatures of the fluid inclusions are the indicators for late-stage rapid oil accumulation.