论文部分内容阅读
针对深度学习中使用少量样本完成模型训练的小样本学习问题,构建一种双路的特征聚合网络,并提出一种新的综合损失函数对网络模型的参数更新过程加以控制。通过综合损失函数,特征聚合网络可将样本映射到更具代表性的特征空间中,从而获得更优的特征分布。实验结果表明,与MN、PN等方法相比,该特征聚合网络能有效降低特征空间的复杂性,提升整体模型的分类效果。