论文部分内容阅读
应用基于风险最小化原理的支持向量机,研究了电信客户欠费分类问题,并与K-均值聚类法、三层人工神经网络进行对比研究,发现支持向量机分类正确率平均为95.48%。K-均值聚类法为83.87%。三层BP人工神经网络为89.80%.结果表明支持向量机能够更好的反映电信客户欠费分类,是一种研究电信客户欠费分类问题的有效方法。