论文部分内容阅读
The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ-OS) independently. For each Direction Of Arrival (DOA) with respect to the transmitting array, the analysis on the gain and sidelobe level of TBF output is presented. This paper focuses on the range sidelobes performance within the main beam (in angle domain). For the normal direction, due to the inherent phase property of ZCZ-OS, the TBF output has part zero sidelobes area, of which the distribution is discussed. For the other directions, a systematic search algorithm to optimize the transmission order of signals is proposed for an optimal relationship chart of DOA and transmission order. The range sidelobe performance within the main beam can be improved as the optimal transmission order is adopted.
The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ-OS) independently. For each Direction Of Arrival ) with respect to the transmitting array, the analysis on the gain and sidelobe level of TBF output is presented. This paper focuses on the range sidelobes performance within the main beam (in angle domain). For the normal direction, due to the inherent phase property of ZCZ-OS, the TBF output has part zero sidelobes area, of which the distribution is discussed. For the other directions, a systematic search algorithm to optimize the transmission order of signals is proposed for an optimal relationship chart of DOA and transmission order The range sidelobe performance within the main beam can be improved as the optimal transmission order is adopted.