论文部分内容阅读
利用数据本身统计特性是实现高光谱数据非监督分类的有效方法之一。针对利用高光谱数据一阶、二阶统计量不能完全表征数据结构的问题,提出了一种基于数据高阶统计特性——峭度的改进独立成分分析方法(Improved Kurtosis-Based Independent Component Analysis,IKICA)的高光谱数据非监督分类方法,并针对利用峭度进行非高斯性度量时对噪声等敏感的问题进行了模型改进。利用同一航带的OMIS高光谱遥感数据对该算法的性能进行了评价,并分别与基于最大似然估计和基于负熵的独立