论文部分内容阅读
针对电力短期负荷的非平稳性影响预测精度的问题,文中提出一种基于变分模态分解(VMD)和门控循环单元(GRU)的电力短期负荷预测方法。首先,利用VMD对电力负荷数据进行分解,得到一组比原始负荷数据更具有规律性的模态分量;然后,采用GRU网络学习每一模态分量动态变化特征,并对该分量进行预测;最后,将每一分量的预测结果叠加,得到最终的预测结果。采用LSTM、GRU、EMD-LSTM、EMD-GRU、VMD-LSTM、VMD-GRU预测模型进行对比实验,得出VMD-GRU模型的平均绝对百分误差仅为2.081