论文部分内容阅读
针对视频分类中时序特征的融合问题,将二维卷积神经网络中的挤压激励(SE)网络与三维卷积残差网络相结合,提出了新的三维挤压激励网络结构模块,该模块比直接转化而来的三维挤压激励模块多了一个时间维度系数,时间维度系数记录了研究对象在时间轨迹上所进行的动作轨迹变化。新模块不仅可以记录某个时间点的特征,而且能够强化多个时间点的关联性。将具有时空纬度的挤压激励网络应用于人物的动作行为识别,检验了新模块的有效性。实验结果表明,新模块可加快损失收敛并有效提高视频分类精度。