论文部分内容阅读
在煤炭需求预测中,存在历史样本量较小和非线性强的特点,从而致使预测精度较低.将支持向量机回归(support vector regression,SVR)与遗传算法(genetic algorithm,GA)相结合,提出了适用于小样本量学习的GA-SVR煤炭需求预测模型.通过分析选取5项指标作为煤炭需求的影响变量;以历史煤炭需求与其影响变量值为学习样本,结合遗传算法确定SVR预测模型参数;实例结果表明GA-SVR模型预测精度优于BP神经网络模型.