论文部分内容阅读
随着计算机图形学技术的不断发展,用户对视频及动画的声音质量提出了更高的要求.针对现有方法中存在的算法复杂度高,可扩展性不强等问题,提出一种基于CGAN和SampleRNN的深度学习的环境声音合成算法,采用VGG网络模型提取视频深度特征.并将视频深度特征通过一个时序同步网络模型,实现具有更高同步性的视频到音频的跨模态特征转换;通过音色增强网络模型对合成声音的音色进行增强,以提高网络结构的可扩展性,并得到最终与视频同步的、真实感较强的环境声.通过对音视频跨模态数据集中12类不同类别视频进行训练与测试,结