网卡虚拟化综述

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:wende198
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,越来越多的应用或微服务部署到云端.虚拟网络是云端部署运行的基本保障.为了构建面向虚拟机和容器等虚拟实例的虚拟网络,网卡虚拟化在物理网卡的基础上,构建虚拟网卡和虚拟网桥等设备,并对各虚拟设备进行配置和管理.本文从虚拟网卡和虚拟网桥出发,调研了网卡虚拟化中目前流行的虚拟技术,并将这些技术进行了分类和比较,最后就网卡虚拟化的现状及未来进行了总结和展望.
其他文献
边缘计算将计算、存储和带宽等资源分布到了靠近用户的一侧.通过将边缘计算引入车联网,服务提供商能为车载用户提供低延时的服务,从而提高用户出行的服务体验.然而,由于边缘服务器所配备的资源一般是有限的,不能同时支持所有车联网用户的服务需求,因此,如何在边缘服务器资源限制的约束下,确定服务卸载地点,为用户提供低时延的服务,仍然是一个巨大的挑战.针对上述问题,本文提出了一种“端-边-云”协同的5G车联网边缘计算系统模型,并针对该系统模型设计了深度学习和深度强化学习协同的分布式服务卸载方法D-SOAC.首先,通过深度
基于联邦学习的智能边缘计算在物联网领域有广泛的应用前景.联邦学习是一种将数据存储在参与节点本地的分布式机器学习框架,可以有效保护智能边缘节点的数据隐私.现有的联邦学习通常将模型训练的中间参数上传至参数服务器实现模型聚合,此过程存在两方面问题:一是中间参数的隐私泄露,现有的隐私保护方案通常采用差分隐私给中间参数增加噪声,但过度加噪会降低聚合模型质量;另一方面,节点的自利性与完全自治化的训练过程可能导致恶意节点上传虚假参数或低质量模型,影响聚合过程与模型质量.基于此,本文将联邦学习中心化的参数服务器构建为去中
近年来,现场可编程逻辑门阵列(FPGA)由于其灵活的可定制性和优秀的并行性,在硬件加速卷积神经网络(CNN)的研究和应用中吸引了广泛的关注.这些工作主要集中在两方面:对特定硬件加速模块的设计和优化以及对一类网络模型的通用加速硬件设计.前者一般是基于数据流的针对固定网络的设计,通过牺牲通用性来换取性能;后者一般是基于指令集能够加速一类模型的设计,通过牺牲性能来换取通用性.为了能够灵活地应对不同的需求,本文提出一种通过管理不同粒度算子来平衡性能与通用性的fGrain框架.该框架一方面利用底层基于数据流的算子设