论文部分内容阅读
基于广义椭球基函数模糊神经网(GEBF-FNN)算法,提出一种新颖的油轮转向动态响应模型.通过事先建立好的一组油轮操纵非线性微分方程获得训练数据,GEBF-FNN算法用于在线辨识Nomoto型油轮转向响应模型的参数K和T.具体地,GEBF-FNN模型从没有任何模糊规则开始,基于规则生长准则和参数估计方法,在线生成模糊规则,从而学习出由一组模糊规则构成的具有高精度和精简系统结构的油轮转向动态响应模型.为验证该动态响应模型的有效性,针对典型的Z形操纵进行仿真研究,并进行广泛的比较研究,仿真结果显示基于GEBF