论文部分内容阅读
【摘要】数控机床是多品种小批量生产的高效自动化的技术群体,它是把多工序加工、切削处理、刀具磨损和测量等各种功能集为一体的自动化机床。我国是世界上机床产量最多的国家,但数控机床的产品竞争力在国际市场中仍处于较低水平,在目前形式下将一大批闲置的普通机床或是旧数控系统的机床进行改造、升级,以较小的投入尽快使这批设备在生产中发挥效能、创造效益,是许多制造业企业正在做的一项工作。
【关键词】数控机床;数控系统;改造
1.引言
近年来我国企业的数控机床占有率逐年上升,在大中企业己有较多的使用,在中小企业甚至个体企业中也普遍开始使用。国内市场对数控机床有大量的需求,目前的现状是国外机床产品大量充斥着市场,通过生产和进口数控机床并不能满足我国日益增长的制造业需求,而淘汰大型企业原有的大量普通金属切削机床不但会造成很大的浪费,而且会因为缺乏资金购买大量的数控机床来填补淘汰普通金属切削机床后的机床空缺,造成停产。所以,目前数控化改造是适应我国制造业迅猛发展,资金短缺,旧有机床所占比例大的国情所需。进行机床改造可以节省资金、提高生产效率,使机床性能稳定可靠,缩短了生产准备周期,提高企业效益。
机床的数控化改造,主要是对原有机床的结构进行创造性的设计,最终使机床达到比较理想的状态。本文主要阐述了对普通卧式车床进行的数控化改造。主要做了以下几方面的工作:第一,对机床存在的故障部分进行诊断并恢复原功能。第二,加数控系统,改造成数控机床。第三,为提高精度、效率和自动化程度,对机械部分重新装配加工,恢复原精度;对电气控制部分进行重新设计和接线。
2.数控机床概述
数控机床是数字控制机床(Computer num-erical control machine tools)的简称,或者说装备了数控系统的机床。数控机床是机电一体化的典型产品,是集机床、计算机、电动机及控制、电力电子技术、自动控制、PLC、检测等技术为一体的自动化设备。
数控系统是所有数控机床的核心。数控系统对输入的加工程序进行数据处理,输出各种信息和指令,控制主轴、进给轴和其他辅助装置正确、及时和可靠地执行加工程序所规定的任务。数控系统一般由输入/输出装置,数控装置,驱动控制装置,辅助控制装置四部分组成,机床本体为被控对象。
3.数控系统的选择
数控系统的选择应根据改造后要达到的精度,各种性能指标等选用性价比合适,技术先进的数控系统,当然还要考虑售后维修服务的便捷性。数控系统的选择主要依据是数控化改造后要达到的各种精度,以及驱动电动机的功率和用户要求。
目前,市场上生产数控系统的厂家很多,比较著名有:国外的如德国的SIEMENS公司,日本的FANUC公司;国内的如武汉华中数控股份有限公司,广州数控设备厂,北京蓝天数控公司。
FANUC数控系统以其高质量、低成本、高性能、较全的功能,适用于各种机床和生产机械等特点,在市场的占有率远远超过其他的数控系统。FANUC数控系统将控制单元与LCD集成于一体,具有网络功能和超高速串行数据通信功能。
4.电气控制电路设计
在电气控制系统的改造设计中,应该遵循:在满足控制要求的前提下,设计方案要简单、经济,控制系统操作简便,使用与维修方便。机床中的主轴电动机,冷却泵电动机,刀架电动机等控制功能实现系统自动控制。改造过程中更换同一型号的老化电器元件有变压器,自动断路器,接触器等,主要增加的电气元件包括主轴编码器,X/Z轴驱动器,电动刀架控制器以及必要的控制开关,继电器等。改造后拆除原电控箱,原位安装改造后的电气柜,最后还需电气和机修人员共同进行通电调试。
4.1 主轴电路
改造后的数控车床主轴采用变频器驱动三相交流异步电机实现主轴无级调速,去除机床原有的主轴变速箱,可以获得更好的操作性能和切削性能。变频器采用日本三菱公司的D720型通用变频器。
4.2 伺服驱动控制电路
在普通车床的数控化改造中一般采用步进电动机和交流伺服电机。交流伺服电动机调速方便,体积小,目前广泛用于数控机床的传动系统。经全面考虑,选用FANUC公司的交流伺服电动机作进给驱动,组成半闭环控制系统。半闭环控制系统在伺服机构中装有角位移检测装置——旋转编码器,通过检测伺服机构的角位移间接检测移动部件的直线位移,然后反馈到数控装置中,与输入的指令位移值进行比较,用比较后的差值进行控制,直到差值为零。这种伺服机构所能达到的精度、速度和动态特性优于开环伺服机构,一般在大多数中小型数控机床使用。
FANUC伺服驱动部分从硬件结构上分,主要有四个部分:
(1)轴卡:在全数字伺服控制中,将伺服控制的调节方式、数学模型甚至脉宽调制以软件的形式融入系统软件中,而硬件支撑采用专用的CPU或DSP等,这些部件最终集成在轴控制卡。轴卡的主要作用是速度控制与位置控制。
(2)放大器:接收轴卡(通过光缆)输入的光信号转换为脉宽调制信号,经过前级发达驱动IGBT模块输出电机电流。
(3)伺服电机:放大器输出的驱动电流产生旋转磁场,驱动转子旋转。
(4)反馈装置:由电机轴直连的脉冲编码器作为半闭环反馈装置。
轴卡接口COP10A输出脉宽调制指令,并通过FSSB(Fanuc Serial Servo Bus发那科串行伺服总线)光缆与伺服放大器接口COP10B相连,伺服放大器整形放大后,通过动力线输出驱动电流到伺服电机,电机转动后,同轴的编码器将速度反馈和位置反馈到FSSB总线上,最终回到轴卡上进行处理,如图1所示。
4.3 刀架控制
数控车床的刀架是机床的重要组成部分。刀架用于夹持切削用的刀具,在一定程度上,刀架的结构和性能体现了机床的设计和制造技术水平,对刀架的设计和控制要求如下:
(1)转位准确可靠,工作平稳安全。
(2)按最短路线就近选择,转位时间短。
(3)换刀时间短,刀具重复定位精度高,刀具存储量足够,结构紧凑及安全可靠等。
(4)防水,防屑,密封性能优良。
(5)夹紧刚度高,适宜重负荷切削,回转刀架在结构上必须具有良好的强度和刚度,以承受机床在切削加工时的切削抗力。
根据卧式车床的型号和主轴中心高度,选择自动回转刀架,拆除原手动刀架后装上自动回转刀架,并用垫板来调整其中心高。此刀架可实现多刀夹持、自动转位、具有重复精度高、刚性好、使用寿命长等特点。
5.结论
该卧式车床改造后,大大提高了加工效率,提高了零件的加工质量,节约了资金,缩短了生产周期,是工厂进行机械设备技术化改造的成功案例。
参考文献
[1]王侃夫.数控机床控制技术与系统[M].北京:机械工业出版社,2008.
[2]黄勇,陈子辰.机床数控系统的发展趋势[M].浙江:浙江大学出版社,2001.
[3]龚仲华.数控机床故障诊断与维修[M].北京:机械工业出版社,2005.
【关键词】数控机床;数控系统;改造
1.引言
近年来我国企业的数控机床占有率逐年上升,在大中企业己有较多的使用,在中小企业甚至个体企业中也普遍开始使用。国内市场对数控机床有大量的需求,目前的现状是国外机床产品大量充斥着市场,通过生产和进口数控机床并不能满足我国日益增长的制造业需求,而淘汰大型企业原有的大量普通金属切削机床不但会造成很大的浪费,而且会因为缺乏资金购买大量的数控机床来填补淘汰普通金属切削机床后的机床空缺,造成停产。所以,目前数控化改造是适应我国制造业迅猛发展,资金短缺,旧有机床所占比例大的国情所需。进行机床改造可以节省资金、提高生产效率,使机床性能稳定可靠,缩短了生产准备周期,提高企业效益。
机床的数控化改造,主要是对原有机床的结构进行创造性的设计,最终使机床达到比较理想的状态。本文主要阐述了对普通卧式车床进行的数控化改造。主要做了以下几方面的工作:第一,对机床存在的故障部分进行诊断并恢复原功能。第二,加数控系统,改造成数控机床。第三,为提高精度、效率和自动化程度,对机械部分重新装配加工,恢复原精度;对电气控制部分进行重新设计和接线。
2.数控机床概述
数控机床是数字控制机床(Computer num-erical control machine tools)的简称,或者说装备了数控系统的机床。数控机床是机电一体化的典型产品,是集机床、计算机、电动机及控制、电力电子技术、自动控制、PLC、检测等技术为一体的自动化设备。
数控系统是所有数控机床的核心。数控系统对输入的加工程序进行数据处理,输出各种信息和指令,控制主轴、进给轴和其他辅助装置正确、及时和可靠地执行加工程序所规定的任务。数控系统一般由输入/输出装置,数控装置,驱动控制装置,辅助控制装置四部分组成,机床本体为被控对象。
3.数控系统的选择
数控系统的选择应根据改造后要达到的精度,各种性能指标等选用性价比合适,技术先进的数控系统,当然还要考虑售后维修服务的便捷性。数控系统的选择主要依据是数控化改造后要达到的各种精度,以及驱动电动机的功率和用户要求。
目前,市场上生产数控系统的厂家很多,比较著名有:国外的如德国的SIEMENS公司,日本的FANUC公司;国内的如武汉华中数控股份有限公司,广州数控设备厂,北京蓝天数控公司。
FANUC数控系统以其高质量、低成本、高性能、较全的功能,适用于各种机床和生产机械等特点,在市场的占有率远远超过其他的数控系统。FANUC数控系统将控制单元与LCD集成于一体,具有网络功能和超高速串行数据通信功能。
4.电气控制电路设计
在电气控制系统的改造设计中,应该遵循:在满足控制要求的前提下,设计方案要简单、经济,控制系统操作简便,使用与维修方便。机床中的主轴电动机,冷却泵电动机,刀架电动机等控制功能实现系统自动控制。改造过程中更换同一型号的老化电器元件有变压器,自动断路器,接触器等,主要增加的电气元件包括主轴编码器,X/Z轴驱动器,电动刀架控制器以及必要的控制开关,继电器等。改造后拆除原电控箱,原位安装改造后的电气柜,最后还需电气和机修人员共同进行通电调试。
4.1 主轴电路
改造后的数控车床主轴采用变频器驱动三相交流异步电机实现主轴无级调速,去除机床原有的主轴变速箱,可以获得更好的操作性能和切削性能。变频器采用日本三菱公司的D720型通用变频器。
4.2 伺服驱动控制电路
在普通车床的数控化改造中一般采用步进电动机和交流伺服电机。交流伺服电动机调速方便,体积小,目前广泛用于数控机床的传动系统。经全面考虑,选用FANUC公司的交流伺服电动机作进给驱动,组成半闭环控制系统。半闭环控制系统在伺服机构中装有角位移检测装置——旋转编码器,通过检测伺服机构的角位移间接检测移动部件的直线位移,然后反馈到数控装置中,与输入的指令位移值进行比较,用比较后的差值进行控制,直到差值为零。这种伺服机构所能达到的精度、速度和动态特性优于开环伺服机构,一般在大多数中小型数控机床使用。
FANUC伺服驱动部分从硬件结构上分,主要有四个部分:
(1)轴卡:在全数字伺服控制中,将伺服控制的调节方式、数学模型甚至脉宽调制以软件的形式融入系统软件中,而硬件支撑采用专用的CPU或DSP等,这些部件最终集成在轴控制卡。轴卡的主要作用是速度控制与位置控制。
(2)放大器:接收轴卡(通过光缆)输入的光信号转换为脉宽调制信号,经过前级发达驱动IGBT模块输出电机电流。
(3)伺服电机:放大器输出的驱动电流产生旋转磁场,驱动转子旋转。
(4)反馈装置:由电机轴直连的脉冲编码器作为半闭环反馈装置。
轴卡接口COP10A输出脉宽调制指令,并通过FSSB(Fanuc Serial Servo Bus发那科串行伺服总线)光缆与伺服放大器接口COP10B相连,伺服放大器整形放大后,通过动力线输出驱动电流到伺服电机,电机转动后,同轴的编码器将速度反馈和位置反馈到FSSB总线上,最终回到轴卡上进行处理,如图1所示。
4.3 刀架控制
数控车床的刀架是机床的重要组成部分。刀架用于夹持切削用的刀具,在一定程度上,刀架的结构和性能体现了机床的设计和制造技术水平,对刀架的设计和控制要求如下:
(1)转位准确可靠,工作平稳安全。
(2)按最短路线就近选择,转位时间短。
(3)换刀时间短,刀具重复定位精度高,刀具存储量足够,结构紧凑及安全可靠等。
(4)防水,防屑,密封性能优良。
(5)夹紧刚度高,适宜重负荷切削,回转刀架在结构上必须具有良好的强度和刚度,以承受机床在切削加工时的切削抗力。
根据卧式车床的型号和主轴中心高度,选择自动回转刀架,拆除原手动刀架后装上自动回转刀架,并用垫板来调整其中心高。此刀架可实现多刀夹持、自动转位、具有重复精度高、刚性好、使用寿命长等特点。
5.结论
该卧式车床改造后,大大提高了加工效率,提高了零件的加工质量,节约了资金,缩短了生产周期,是工厂进行机械设备技术化改造的成功案例。
参考文献
[1]王侃夫.数控机床控制技术与系统[M].北京:机械工业出版社,2008.
[2]黄勇,陈子辰.机床数控系统的发展趋势[M].浙江:浙江大学出版社,2001.
[3]龚仲华.数控机床故障诊断与维修[M].北京:机械工业出版社,2005.