论文部分内容阅读
为提高TLD算法在广泛场景下跟踪鲁棒性和实时性的问题,本文从跟踪模块和学习模块两个方面对TLD算法进行了改进,提出引入样本删除机制的TLD粒子群目标跟踪算法。首先,用基于颜色特征的粒子群目标跟踪算法替代TLD算法中原来的跟踪模块,增强TLD算法在应对目标出现非刚性形变、尺度变化、旋转、遮挡等情况下的跟踪鲁棒性。接着,针对TLD算法的学习模块引入样本删除机制,在跟踪过程中为样本库中正负样本数量分别设定一个阈值,当正负样本数都达到各自阈值时,便会启动样本删除机制。然后,对待分类进入样本库的图像块进行等级