运动引导的核相关滤波跟踪算法

来源 :数学理论与应用 | 被引量 : 1次 | 上传用户:chouyez
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
核相关滤波是视觉目标跟踪领域的重要算法之一,但该算法的目标搜索范围有限,容易受到目标瞬移和方向快速变化等情况的影响,导致目标跟踪失效.针对该问题,本文引入注意力机制对核相关滤波目标跟踪算法进行改进.我们首先通过视网膜大细胞通路模型来提取运动区域,然后利用光流算法计算前一帧目标边界框内运动区域的平均光流来确定目标候选框,最后在该候选框上通过核相关滤波算法确定目标边界框.在Anti-UAV2020数据集上的实验结果表明,当利用PyrLK算法计算光流时,所提方法相比于基线方法在跟踪精确率与成功率方面分别提
其他文献
We describe all degenerations of the variety(3)ot?3 of Jordan algebras of di-mension three over C.In particular,we describe all irreducible components in(3)ot?3.For every n we define an n-dimensional rigid“marginal”Jordan algebra of level one.Moreover,we
We introduce the notions of a four-angle Hopf quasimodule and an adjoint quasiaction over a Hopf quasigroup H in a symmetric monoidal category C.If H possesses an adjoint quasiaction,we show that symmetric Yetter-Drinfeld categories are trivial,and hence
Let k be a fixed algebraically closed field of arbitrary characteristic,let Λ be a finite dimensional self-injective k-algebra,and let V be an indecomposable non-projective left Λ-module with finite dimension over k.We prove that if τΛV is the Auslander-R
Let H be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero.In this paper we show that any finite-dimensional indecomposable H-module is generated by one element.In particular,any indecomposable
In this article we investigate the relations between the Gorenstein projective dimensions of A-modules and their socles for n-minimal Auslander-Gorenstein algebras A.First we give a description of projective-injective A-modules in terms of their socles.Th
A Cayley graph Γ=Cay(G,S)is said to be normal if G is normal in Aut Γ.In this paper,we investigate the normality problem of the connected 11-valent symmetric Cayley graphs Γ of finite nonabelian simple groups G,where the vertex stabilizer Av is soluble fo
相场既是一种应用模型也是一种研究方法,在材料微结构演化等实际问题中有广泛应用.本文首先建立广义分数阶Allen-Cahn相场方程模型,并采用有限差分方法在时间和空间上对模型进行离散,得到相应的离散格式;其次分别对整数阶、分数阶和广义分数阶的Allen-Cahn方程进行数值模拟,通过数值结果验证本文所建立的广义分数阶模型的有效性;最后探讨界面宽度对Allen-Cahn相场方程的数值解的影响.本文从广义分数阶基本原理出发,拓宽了相场方程的研究范围,对材料微结构演化研究有重要意义.
已知当1<a<p<∞时,有H*p=HSp=a Kp=Lp成立.一个自然的问题是H*1,HS1和L1之间的关系是什么?1970年,Davis证明了H*1=HS1.然而,到目前为止很少有关于H1和L1u之间关系的研究.在本文中,我们通过构造反例的方式说明H1(?)L1u,最终得到H1(?)L1u(?)L1.“,”As we have already known that when 1<a<p<∞,H*p=HSp=a Kp=Lp.A natural question is that what the relat
本论文考虑Helmholtz系统下分片常数性质的磁导率和介电常数的重构.首先,我们将卡尔德隆等式推广到Helmholtz系统下,然后通过对一次测量数据限制适当的条件,可以证明重构具有唯一性.这在现有文献中是全新的.“,”We consider the recovery of piecewise constants permeability and permittivity distributions in the Helmholtz system.First,the so called Calderón