论文部分内容阅读
以苯储罐为研究对象,利用ALOHA软件模拟了不同大气温度、风速、地面粗糙度、泄漏口直径和测点条件下苯浓度的变化。将ALOHA模拟数据作为训练样本,建立苯泄漏区域浓度的粒子群-支持向量机(PSO-SVM)预测模型。为验证模型预测性能,采用遗传算法支持向量机(GA-SVM)模型和支持向量机(SVM)模型进行预测,并与PSO-SVM模型对比。结果表明,PSO-SVM模型预测效果优于GA-SVM和SVM模型。