论文部分内容阅读
提出基于张量多线性PCA的多变量时间序列模式匹配方法,通过张量多线性PCA对多变量时间序列进行低维重构并获得其模式表示,然后利用Frobenius范数设计模式间的相似性度量.在四组公开的多变量时间序列数据集上进行实验,结果表明该方法的匹配准确率较高,时间开销较少,且适用于各种规模的数据集.