论文部分内容阅读
针对经典的单阶段多目标检测算法SSD对小目标物检测效果差的问题,提出DF-SSD算法,其核心技术贡献包括基于反卷积与特征融合的方法和改进后的先验框尺寸计算算法。反卷积与特征融合能够增加浅层特征层的语义信息。改进后的先验框尺寸计算引入了数据集的特点,能有效利用每一个先验框进行训练和预测。改进后的方法 DF-SSD与基于SSD改进的R-SSD和RSSD模型相比,具有较高的检测准确率。同时,DF-SSD的检测时间仅是R-SSD的1/2,是DSSD的1/5。改进后的方法在VOC2007和DIOR这2个数据集