论文部分内容阅读
提出了一种新的音乐分类方法,该方法使用线性判别分析(LDA)和支持向量机(SVMs)对音乐数据进行分类。在实现音乐分类中,先使用傅里叶变换等方法从每一段音乐中提取音频特征,包括Mel倒谱系数及基音频率等,并将它们接比例组成一个高维向量;再使用LDA对这些高维向量进行降维,使得各类音乐的类间离散度与类内离散度的比值最大;最后使用SVM等4种分类器对降维后的特征进行分类。实验证明LDA及SVM使得音乐分类的精确度有了较大的提高。