论文部分内容阅读
Summary: The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor (TGF)-β1 genes in bone marrow-derived mesenchymal stem cells (MSCs) in vitro. The full-length rat TGF-β1 cDNA was transfected to MSCs mediated by lipofectamine and then selected with G418,a synthetic neomycin analog. The transient and stable expression of TGF-β1 by MSCs was detected by using immunohistochemical staining. The lipofectamine-mediated gene therapy efficiently trans fected MSCs in vitro with the TGF-β1 gene causing a marked up-regulation in TGF-β1 expression as compared with the vector-transfected control groups, and the increased expression persisted for at least 4 weeks after selected with G418. It was suggested that bone marrow-derived MSCs were sus ceptible to in vitro lipofectamine mediated TGF-β1 gene transfer and that transgene expression persist-ed for at least 4 weeks. Having successfully combined the existing techniques of tissue engineering with the novel possibilities offered by mod gene transfer technology, an innovative concept, I.e.molecular tissue engineering, are put forward for the first time. As a new branch of tissue engineer-ing, it represents both a new area and an important trend in research. Using this technique, we have a new powerful tool with which: (1) to modify the functional biology of articular tissue repair along defined pathways of growth and differentiation and (2) to affect a better repair of full-thickness artic ular cartilage defects that occur as a result of injury and osteoarthritis.