论文部分内容阅读
提出了一种基于局域波-粗糙集-神经网络的智能故障诊断方法。首先通过局域波法进行故障特征提取,获取能够反映设备运行状态的由局部能量组成的特征向量;接着应用粗糙集理论对样本特征参数进行属性约简,去除冗余信息,获取最优的决策系统;最后根据最优决策系统来构造RBF神经网络,并进行故障诊断。以柴油机缸套活塞磨损故障为例,详细说明了基于粗糙集-局域波-神经网络的故障诊断方法的原理和步骤。诊断结果证明了此方法的有效性。