论文部分内容阅读
Potentiodynamic polarisation, potential-time measurements, X-ray diffraction (XRD) and infrared spectroscopy (IR) have been used to investigate the effect of different concentrations of Na2SO4 in the absence and presence of NaCI, on the corrosion of Cu-alloy. The electrochemical measurements showed that the increase of Na2SO4 concentration led to increase the corrosion current density of Cu alloy and vice versa. The presence of NaCI shifted the potential to more cathodic potential, which had a great influence on the protectiveness of the Cu oxide layer formed on the surface in presence of Na2SO4. The spectrometric measurements indicated the constituents of the film formed on the alloy surface were mainly Cu2O, in addition to the oxides, NiO and Fe2O3, which were traced by XRD analysis.
Potentiodynamic polarisation, potential-time measurements, X-ray diffraction (XRD) and infrared spectroscopy (IR) have been used to investigate the effect of different concentrations of Na2SO4 in the absence of presence of NaCI, on the corrosion of Cu-alloy. electrochemical measurements showed that the increase of Na2SO4 concentration led to increase the corrosion current density of Cu alloy and vice versa. which presence of more than one cathodic potential, which had a great influence on the protectiveness of the Cu oxide layer formed on the surface in presence of Na2SO4. The spectrometric measurements indicated the constituents of the film formed on the alloy surface were mainly Cu2O, in addition to the oxides, NiO and Fe2O3, which were traced by XRD analysis.