论文部分内容阅读
定义了原子特征值iβ和βi′,由iβ建构连接性指数mXA,由βi′建构其逆指数mXB,运用定量结构-性质相关技术研究了42个一元醇分子的折光指数与分子结构间的定量关系。通过多元回归的方法建立了mXA和mXB与折光指数的定量结构性质模型,回归方程为:nD=-0.14190X-A1+0.04341X-A1-0.25340X-B1-0.14601X-B1+1.4659。对醇折光指数的计算结果表明,预测值与实验值的一致性令人满意,平均相对误差为0.15%。研究表明连接性指数及其逆指数在一起使用可以更好地反映出醇的构效关系。
The atomic eigenvalues iβ and βi ’were defined. The connectivity index mXA was constructed by iβ and the inverse index mXB was constructed by βi’. The quantitative structure-property correlation technique was used to study the relationship between the refractive index of 42 monol molecules and the molecular structure relationship. The quantitative structure property model of mXA, mXB and refractive index was established by multiple regression method. The regression equation was: nD = -0.14190X-A1 + 0.04341X-A1-0.25340X-B1-0.14601X-B1 + 1.4659. The calculation of the refractive index of alcohol showed that the consistency between the predicted value and the experimental value was satisfactory with the average relative error of 0.15%. Studies have shown that the connectivity index and inverse index can be used together to better reflect the structure-activity relationship of alcohol.