论文部分内容阅读
MKL是知识获取系统NDKAS中实现的一个元知识学习算法,它在分类及抽象的基础上归纳出二叉树结构的元知识,用以有效地组织知识库中的规则.MKL生成的元知识满足元知识的基本性质.本文给出了MKL的算法描述,基本性质的满足性证明及算法的应用例子.
MKL is a meta-knowledge learning algorithm implemented in NDKAS, which summarizes the meta-knowledge of binary tree structure based on classification and abstraction to effectively organize the rules in the knowledge base. The meta-knowledge generated by MKL satisfies the basic nature of meta-knowledge. This paper presents the algorithm description of MKL, proof of the basic nature of satisfaction and application of the algorithm.