论文部分内容阅读
为探讨高分辨率遥感图像用于中小尺度森林分类的模式,利用SPOT5遥感数据、地面样地调查数据和前期森林资源规划设计调查G IS资料,以图像的光谱和纹理信息为主、历史调查数据的知识为辅构建专家知识分类系统对SPOT5图像进行森林分类,并探讨了历史调查数据在该模式中的贡献率。结果表明,对于所选取的8个类别,总体分类精度达到了92.97%,各类别的分类精度均达到87%以上,分类效果良好;历史调查数据在分类过程中的总体贡献率为11.55%,对提高SPOT5图像分类有较大的帮助作用,尤其对竹林、八角和玉桂、灌木