论文部分内容阅读
目的目标在跟踪过程中,各种因素的干扰使得跟踪结果存在不确定性。因此,将跟踪过程中所提取样本的可靠性融入跟踪模型中,有助于克服低可靠性样本对跟踪算法的影响。为此,基于最近的结构化支持向量机(SSVM)跟踪算法,提出一种包含样本置信度的加权间隔结构化支持向量机跟踪模型(WMSSVM),以增强SSVM跟踪算法性能。方法首先,基于打分和位置重合率估计样本可靠性;其次,建立WMSSVM模型处理具有不同置信度的跟踪样本训练问题,并采用对偶坐标下降优化算法求解跟踪模型。结果在包含100个视频的OTB100跟踪数据