论文部分内容阅读
Resistance in iron ore undergoes a sharp change of up to several orders of magnitude when the sintered solid phase changes to liquid phase. In view of the insufficiency of existing assimilation detection methods, a timing-of-assimilation reaction is proposed, which was judged by continuously detecting the changes in resistance at the reaction interface. Effects of pole position and additional amounts of iron ore on assimila-tion reaction timing were investigated. The results showed that the suitable depth of pole groove was about 2 mm, and there was no obvious im-pact when the distance of the poles changed from 4 to 6 mm, or the amount of iron ore changed from 0.4 to 0.6 g. The temperature of sudden change of resistance in the temperature-resistant image was considered to be the lowest assimilation temperature of iron ore. The accuracy of this resistance method was clarified by X-ray diffraction, optical microscope, and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) analyses.