论文部分内容阅读
成分一结构一性能之间的关系始终是材料科学研究的主题,传统的试错法等经验或半经验的材料研究方法造成了资源、人力和时间上的极大浪费,因此需要从理论上解决材料设计、评价、预报等方面问题.人工神经网络是具有在线学习、记忆和分析推理功能能力的数学方法,它能够获得输入与输出之间的相互关系.其中BP神经网络结构简单、理论研究比较成熟.在材料研究领域中,BP神经网络已用于材料性能的研究与预测,复合材料工艺参数优化和预报,以及对金属的腐蚀研究等方面.