赤水河流域水体抗生素污染特征及风险评价

来源 :环境科学 | 被引量 : 0次 | 上传用户:guizhicheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了初步探究贵州赤水河流域地表水的抗生素浓度分布特征及潜在生态风险,利用固相萃取-液相色谱串联质谱法(SPE-LC-MS)对地表水样品中21种抗生素进行检测分析.结果表明,赤水河地表水共检出12种抗生素,总浓度水平为ND~1 166.97 ng·L-1,氧氟沙星、甲氧苄啶和磺胺嘧啶的检出率均为100%.平均检出浓度最高的3种抗生素分别是氧氟沙星(221.59 ng·L-1)、四环素(13.18 ng·L-1)和磺胺嘧啶(4.11 ng·L-1),抗生素浓度分布呈现:下游(359.41 ng·L-1)>中游(224.59 ng·L-1)>上游(179.72 ng·L-1).生态环境风险评估结果表明,下游点位W21具有最大的风险商值,其中四环素、强力霉素、恩诺沙星、诺氟沙星、红霉素和林可霉素的风险商值具有中风险水平,氧氟沙星具有高风险水平,这说明赤水河流域水体抗生素可能会造成一定的生态风险.
其他文献
2019年12月1日至2020年3月31日新型冠状病毒肺炎(COVID-19)期间,采用Syntech Spectras GC955在线气相色谱仪对杭州市大气环境中挥发性有机物(VOCs)进行了在线连续监测,分析了 VOCs的组成特征、日变化规律和大气化学反应活性.结果表明,不同站点疫情前φ(总VOCs)均最高,一级响应期间均最低;夜间φ(总VOCs)普遍高于白天,卧龙桥φ(总VOCs)日变化幅度小于下沙,一级响应期间φ(总VOCs)日变化幅度小于其他3个时期;下沙φ(总VOCs)日变化呈现“V”字型特征
基于2019年3月~2020年2月环境空气质量监测数据,分析了运城市PM2.5污染的时空分布特征,并利用HYSPLIT后向轨迹模型和聚类分析等方法探讨不同季节运城市PM2.5污染的输送路径和潜在源区.结果表明,运城市ρ(PM2 5)冬季最高(111.24 μg·m-3),夏季最低(30.02μg·m-3),PM2.5/PM10秋冬季均大于0.6,表明运城市秋冬两季颗粒物污染以细颗粒物为主;空间上ρ(PM2.5)年均值呈现北部和中部高、东部和西部低的分布特征,高值区PM2.5与SO2、NO2和CO呈显著强相
目前在世界范围内,由于高原城市海拔高、紫外线照射强烈,造成大气中挥发性有机物的源汇归趋呈现较独特的特点.本研究对2019年拉萨市2个城市站点和1个背景站进行大气挥发性有机物(VOCs)的离线罐采样及实验室组分分析,探究了拉萨地区VOCs体积分数水平、组成特征和来源贡献.拉萨市平均φ(VOCs)为49.83×10-9,其中烷烃类最高,占比为61%,其次为含氧VOCs(OVOCs,12%)、卤代烃(9%)、烯烃(9%)、芳香烃(5%)和炔烃(4%).拉萨市市区站点中,八廓街站和区辐射站的VOCs源贡献顺序为:
电子垃圾拆解回收过程中的高温处理往往产生大量挥发性有机物(VOCs),对周边环境及人体健康产生不可忽视的影响.本研究选取某电子垃圾集中拆解回收场,对场区加热烤板车间、塑料制粒车间、湿法提取车间和火法冶炼车间废气处理设施排放口的VOCs浓度和组分进行监测,分析了不同生产工艺VOCs排放特征及其总VOCs排放因子.结果表明,不同生产工艺有组织排放的ρ(总VOCs)差异较大,其排序为:加热烤板-加热滚板炉工艺[(2 096.1±732.4)μg·m-3]>塑料制粒工艺[(1639.1±538.5)μg·m-3]
VOCs是O3和SOA形成的重要前体物,可增强大气氧化性,促进二次污染物形成,影响区域空气质量和人体健康.为研究铜川市秋冬季VOCs特征及其对O3和SOA生成的潜力,利用TH-300B在线监测系统监测了铜川市区102种VOCs的体积分数,并结合最大增量反应活性系数法和气溶胶生成系数法分别计算VOCs的O3及SOA生成潜力.结果表明,铜川市秋季和冬季 φ(TVOC)分别为(50.52±16.81)×10-9和(63.21±35.24)×10-9,O3生成潜势分别为 138.43×10-9和 137.123×
大气降水中氢氧稳定同位素比率(δ18O和δ2H)的定位监测有助于理解水体相变、混合和输送的过程,南疆塔里木河流域东部气候干旱,水资源是影响可持续发展的关键资源,然而目前对其大气降水中氢氧稳定同位素的认识仍十分有限.基于塔里木河流域东部4个采样点2019年6月~2020年9月采集的103个降水样品,分析了大气降水中氢氧稳定同位素的时空特征,探讨了氢氧稳定同位素与水汽来源的联系,从而为环境同位素示踪技术在干旱区的应用提供参考.结果表明:①塔里木河流域东部4个采样点降水中氢氧稳定同位素值整体呈现南高北低的趋势,
为研究昭通市主城区扬尘中重金属的污染特征及健康风险,2019年5月在昭通市昭阳区采集了道路尘和周边土壤尘样品,使用颗粒物再悬浮系统将尘样悬浮并采集PM2.5(空气动力学当量直径≤2.5 μm的颗粒物),并利用ICP-MS和ICP-OES检测了 PM2.5中 Ca、Al、Fe、Mg、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd和Pb等15种金属元素.对其中10种重金属的研究表明,Mn在土壤尘中含量最高,其次为Cr、Ni、Zn、Cu、Co、Pb、V、As和Cd;Zn在道路尘中含量最高,其次为Mn、
为研究上海市夏季臭氧高发季节大气VOCs在臭氧生成中作用,选取2018年5~8月大气臭氧较高的时段,在淀山湖科学观测研究站对103种挥发性有机物、臭氧和氮氧化物等环境污染物进行观测.结果表明,上海臭氧高发季节大气平均φ(VOCs)为32.7×10-9,羰基化合物是VOCs的主要组分,所占质量分数达35.0%.羰基化合物中甲醛体积分数最高,其次是丙酮,占12种测量羰基化合物总量的82.8%.5月环境空气的化学反应活性最强,总的臭氧生成潜势(OFP)为337.2μg·m-3,甲醛贡献率最大.烷烃、烯烃和芳香烃
本文基于淄博市2019年18个自动监测站连续1 a的O3与前体物(NOx、VOCs和CO),及常规气象监测数据(气温、相对湿度、风速和能见度),选取城区和郊区代表性站点,研究了 O3与前体物的污染特征以及O3生成的影响因素.结果表明,淄博市2019年O3-8h浓度超标率为25.8%,超标天多出现在5~9月;城区NOx浓度高于郊区,而O3和VOCs浓度较低;各污染物的小时变化率具有明显的季节特征,秋冬季节O3上升和前体物下降时间均较春夏季节晚1 h左右,且O3生成累积的高峰时段缩短,城区O3浓度的整体上升速
以无定河流域为研究区,分析地下水和地表水水化学特征,讨论溶质来源及其控制因素,为水质管理提供参考依据.考虑季节效应,在枯水期和汛期分别进行水样采集,综合运用图解法、相关性分析和正向推演模型分析水化学时空演化特征,探讨水化学形成机制并定量不同来源对溶质的贡献率.结果表明,无定河流域水体整体呈弱碱性,主要的阴、阳离子分别为HCO3-和Na+,水化学类型多数地区呈现HCO3·SO4-Na·Ca型.水质自西向东沿河道逐渐变差,超Ⅲ类水集中分布在枯水期支流和汛期下游.阳离子交换作用导致水中Na+和K+浓度增多,不同