量子计算纠错取得突破性进展

来源 :物理学报 | 被引量 : 0次 | 上传用户:liuhongbin0321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
谷歌团队利用超导量子芯片,实现了两种规模的量子纠错表面码,利用辅助比特进行多次测量和初始化操作进行纠错,表明使用更多量子比特表面码的逻辑比特,其性能表现更好,达到了量子纠错规模化的盈亏平衡点,本文简要回顾量子纠错的机制,讨论谷歌量子纠错结果的意义,以及系列量子纠错进展,最后将展望量子计算的发展方向.
其他文献
卡尔·费休容量法水分测定仪广泛应用于石油、化工、食品等领域,其结构简单、测量准确。为保证测量的准确性,需按照国家计量检定规程JJG 1154-2018的要求对其进行校准。本文以卡尔·费休容量法水分测定仪为例,详细讨论了其校准过程中的注意事项,并对相对示值误差校准的不确定度进行了评定。
期刊
为满足国民生产需要,浅表层油气资源不断被开采,产量日渐降低,向深部油气进发是整个石油工业的未来发展大势。深部地层因为钻进速度慢、成本高等原因对钻井方式提出了新要求。粒子钻井是以亚弹速刚性粒子破碎岩石为主,辅以高压水射流的一种新型钻进手段,具有良好的发展潜力。本文采用理论分析、数值模拟与实验相结合的方法,探索亚弹速钢质颗粒流冲击作用下所形成破碎坑下方附近岩石的微观损伤,基于流体动力学和随机统计理论进
学位
鄂尔多斯盆地页岩气储量丰富,但页岩地层水平段钻井过程中井壁失稳情况严重,导致钻井施工进展缓慢,影响页岩气的勘探开发进程。页岩地层井壁失稳问题仍然是世界性难题。因此,急需深入研究页岩井壁失稳机理,研制性能优异的封堵剂,揭示其封堵作用机理,并研究其在水基钻井液中的应用。天环坳陷乌拉力克组岩样组成以石英为主,平均粘土矿物含量为23.9%,粘土矿物以伊利石为主,孔隙裂缝发育,属于硬脆性页岩;岩心水化性能较
学位
随着勘探开发范围的扩大,储层埋藏更深,井底温度越来越高,高温固井面临的挑战日益严峻。水泥石本身是由纳米尺度的水化硅酸钙、纳米级孔等精细结构开始逐级向上构建的,因此在纳米尺度调控其水化进程,优化其微观结构成为进一步优化水泥基材料机械与耐久性能的新思路。应用纳米材料来解决油气井固井中存在的问题正逐步成为一个研究热点,然而纳米材料在油井水泥特别是高温油井水泥中的应用还处于探索阶段。为此,本文主要研究纳米
学位
PDC钻头粘滑振动对钻井作业危害严重。PDC钻头发生粘滑振动时反应在力学和运动参数上均表现为扭矩和转速的周期性波动,其根本原因是钻进时切削深度突变。以不同岩性岩石为破碎对象,探索研究不同作业条件下转速、扭矩等井下参数的波动规律与切削齿切削深度的复杂关系,对有效抑制PDC钻头粘滑振动和提高破岩效率具有重要工程意义。本文针对切削深度对PDC钻头破碎不同岩性过程中的粘滑振动特征影响问题开展了数值模拟和室
学位
进入二十一世纪以来,北极地区逐渐成为世界油气勘探开发重要的战略接替区。与常规油气藏相比,极地油气资源钻采的特殊性在于冻土地层与常规地层截然不同的性质。冻土是指温度低于0℃,并含有冰的各种岩石和土壤,是由固体矿物颗粒、理想塑性的冰包裹体、液相水、气态包裹体组成的多相体系。在极地钻井过程中,钻井液的热量容易通过井筒传递至地层,导致近井地带冻土的融化,进而会引起井口沉降等事故,严重阻碍油气资源的开发进程
学位
海洋深水水合物层封固时,油井水泥在凝固过程中产生大量的水化热,导致固井层段水合物分解,对尚未发展足够强度的水泥环产生巨大的安全隐患,从而引发固井质量问题,甚至安全事故。目前现有的固井水泥体系水化峰值较高,不能有效满足水合物层固井的需要。本文在自制的中空微球的基础上,对热能存储剂进行研选,构建一套中空微球封装水泥热能存储剂方法,为降低固井水泥的水化放热提供技术保障,为深水油气后期开发中全井生命周期的
学位
防砂筛管是机械防砂完井的主要工具,在防砂作业过程中起着至关重要的作用。然而,筛管在服役过程中受岩层压力变化,地层运动或变形等导致的复杂载荷影响,易发生压溃变形,严重威胁油气井的正常生产,是目前业界普遍关心的一个难题。筛管的布孔参数是影响筛管压溃载荷性能的重要参数;因此,研究外压和组合载荷作用下筛管的压溃行为,分析不同载荷工况下布孔参数等对筛管压溃载荷的影响规律具有重要意义。本文建立了外压和组合载荷
学位
随着全球范围内的常规油气藏产量的日益下降,非常规油气藏如页岩油藏的勘探开发开始进入到科技工作者的视野中。由于页岩油储层具有高致密、低渗透的典型特征,因此在开采此类油气藏的过程中需要实施相应的增产措施。水力压裂技术是近年来针对有效开采页岩油的的核心工艺措施之一,其主要思想是通过注入一定特性的压裂液使地层裂开,使地层形成尽可能多和复杂的具有强导流能力的人工裂缝网络通道,以此来提高油气产量。为了获取页岩
学位
天然气水合物是一种未来重要的清洁能源,且储量巨大,受到了世界各国的广泛重视。我国于2017年5月对南海神狐海域水合物进行了试采,取得了巨大进展和成功,但是最终的产气量仍难达到商业化开采规模。探索水合物在连续试采中日产量衰减迅速的原因和机理对加快我国水合物的商业化开采进程有着有重要理论和现实意义。针对神狐海域水合物藏未固结或极弱固结特征,以及水合物完全分解后地层骨架变形大的特点,本文从储层堵塞的角度
学位