论文部分内容阅读
研究了一种神经元模型,在该模型中将参数可调的激励函数往前移到权值上。即把权值变为参数可调的函数,这些权值函数的累加和作为神经元的输出.将此类神经元称为权值函数神经元,根据BP算法给出了由其构成的前馈神经网络的学习算法.仿真实验对比结果表明.在给定的误差精度要求下,基于权值函数神经元的BP神经网络每次训练都能收敛,且平均迭代步数较少,其收敛速度要优于传统BP网络,具有较好的研究应用价值.