Hot deformation behavior of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si alloy with acicular microstructure

来源 :中南大学学报(英文版) | 被引量 : 0次 | 上传用户:wang8327501
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-l.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s-1 at 860-1 100 ℃. The true stress-true strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s-1 and in a wide temperature range, the alloy exhibits plastic flow instability. According to the kinetic rate equation, the apparent activation energies are estimated to be about 633 kJ/mol in the α+β region and 281 kJ/mol in the β region, respectively. The processing maps show a domain of the globularization process of α colony structure and α dynamic recrystallization in the temperature range of 860-960 ℃ with a peak efficiency of about 60%, and a domain of β dynamic recrystallization in the β region with a peak efficiency of 80%.
其他文献
原子X射线吸收精细结构(AXAFS)由吸收原子的外围束缚电子对出射光电子波的背散射引起,AXAFS信号与嵌入原子势能、原子间隙势能和吸收原子电子密度的分布密切相关,可以作为精
Tetragonal ZrO-3 mol% YO (3Y-TZP) coated with CePOwas synthesized by a co-precipitation method and the effects of CePO content and sintering temperature on its
采用柠檬酸溶胶法合成了一系列LaMn1-xBixO3(x为0,0.1,0.2,0.3,0.4)钙钛矿型催化剂,通过X射线衍射(XRD)、比表面积测定(BET)、傅里叶红外光谱(FT-IR)、程序升温还原(H2-TPR)
土壤侵蚀导致水土资源及土地生产力的破坏和损失,泥沙淤积危害及其引发的一系列水环境效应已成为当前及以后一段时期内研究的热点和重点。开展流域(河流)泥沙来源研究,查明入塘、
A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermo
A series of researches were carried out for the soil samples in the Pearl River Delta under the action of consolidation loads, such as the quantitative analyses
As a part of the green process for manufacturing chromium compounds, two steps are involved in the synthesis of ultra-fine Cr2O3 powders: the first is the hydro