论文部分内容阅读
基于内容的敏感图像检测方法是过滤互联网上敏感信息的有效手段。然而,基于全局特征的检测方法误检率偏高,现有的基于BoW(bag-of-visual-words)的检测方法速度较慢。为了快速准确地检测敏感图像,本文提出基于视觉注意模型VAMAI(visual attention model for adult images)的敏感图像检测方法,包括构造面向敏感图像的视觉注意模型VAMAI、基于兴趣区域和SURF(speeded up robust features)的视觉词表算法、全局特征选择及其与Bo