论文部分内容阅读
为建立沉香(Aquilaria sp.)含油量的近红外光谱预测模型,在950~1 650 nm的光谱范围内,使用DA7200 NIRS分析仪收集了64个沉香样本的光谱数据,采用偏最小二乘法(PLS)建立回归模型,并选择最佳预处理方法和最佳主成分数,建立沉香含油量近红外光谱模型。结果表明,采用卷积平滑法(S-G)对光谱进行预处理且当最佳主成分数为7时,可达到最优模型,其校正集相关系数(RC)和校正集均方根误差(RMSEC)分别为0.980 9和0.958 9,交互验证集相关系数(RV)和交互验证集均方根误差