论文部分内容阅读
基于具有电弧炉电极系统的非线性时变特性,设计了一种基于神经网络的参数自整定PID控制器。该控制器采用三个基于最近邻聚类方法的RBF神经网络快速学习算法,通过实时在线辨识,建立被控系统的精确模型并得到精确的Jacobian信息分别提供给三个BP神经网络,从而实现了三相耦合系统的精确控制,仿真结果证明了这种方法的可行性和有效性。