论文部分内容阅读
摘要:本文主要讨论了呋喃甲基杯[4]间苯二酚芳烃的合成制备,并对实验条件进行研究改进,本文对反应时间及其它反应条件进行了讨论,主要讨论了物料比、反应溶剂比、反应温度、反應时间、滴加速度对合成杯芳烃母体收率的影响,得出最好的实验方案。
最后得到的最佳实验方案为:呋喃甲醛与间苯二酚的物料比为1:1,溶剂中乙醇、水、盐酸按10:9:1的比例配比,反应温度设定为70℃,最佳的反应时间为4h,滴加速度为2秒/滴。
关键词:杯芳烃 呋喃甲基杯[4]间苯二酚芳烃 合成
杯芳烃是一类具有独特空穴结构的大环化合物,是继冠醚和环糊精之后的第三代超分子主体化合物。以其易修饰、空腔大小可调、对离子或分子客体均能识别等特性,日益受到人们的重视。功能化杯芳烃在生命科学、分离技术等领域有广阔的应用前景。近年来,国内外化学界对此研究异常活跃。
一、题目研究的目的
杯芳烃自从被发现,在长时间的研究与探索后,实现了工业上的实际应用,具体有如下情况:
1.金属离子的回收
最早的应用是Izatt等利用杯芳烃的液膜传输性能从核废料中回收金属铯[1,2]。回收装置包括三个液相:第一个液相为含大量均裂变的降解产物的强碱性水溶液,用作源相,其中有铯;第二相为一定比例的二氯甲烷和四氯化碳组成有机液膜相,1mM的杯[8]芳烃溶于其中;第三相为二次蒸馏水,用作吸收相。Cs+通过第二相从第一相进入第三相,达到回收的目的[3]。
2.相转移催化
和冠醚、环糊精一样,许多杯芳烃及其衍生物具有萃取和转移金属离子的能力,因此,其在相转移催化研究方面有潜在的应用价值。早在1977年,BurkiS等就发现,下缘连有乙氧基链的对叔丁基杯芳烃在非极性介质中具有相转移催化能力,可以解决油一水乳化问题。与常用的相转移催化剂比较,杯芳烃催化剂的用量更小,反应时间更短,活性更高,像苄溴和苯酚在碱的作用下生成苯甲基苯醚的反应[4]。
3.模拟酶
杯芳烃及其衍生物还可以作为人工酶模型模拟生物酶的催化功能。Ungaro等将冠醚杯芳烃成功的用作水解酶模型。他们发现,冠醚杯芳烃对乙酸酷的甲醇解在没有金属离子存在时反应极慢,但在加入少量的Ba2+后可以使反应加速一百万倍以上,效率己与转酰化酶相当[5]。
我国的陈淑华研究组设计并合成了一系列杯[n]芳烃——单、双卟啉多部位识别受体(n=4,6)。它们对金属离子有优良的识别配位能力[6]。
4.有机材料稳定剂
由于杯芳烃的热稳定性及非挥发性使它的衍生物可用于塑料,橡胶等的抗氧化剂以及光稳定剂。例如杯芳烃的亚磷酸酷已用作聚合物的热稳定剂,对叔丁基杯[4]芳烃也可用作聚烯烃的光稳定剂和热稳定剂[7]。
5.污染控制
未修饰的杯芳烃可用来除去一些有机化学物,特别是极性碳氢化合物如卤化烃。
从1908年以来,普遍采用氯气处理来改善饮用水及工业用水的微生物质量。然而在1974年,人们发现这种水处理法带来了氯与腐殖和灰黄霉酸的副反应。结果产生了三卤甲烷,如有溴离子存在,还可形成二氯溴甲烷,氯二溴甲烷及溴仿。它们具有致癌作用,并经常致人染毒。
Wainwright等发现对叔丁基杯[4]芳烃对三餐甲烷有显著的螯合作用,并且反应很快。产生的包结化合物有相对高的稳定性。为了获得在固相条件下更好的反应活性,必须把杯芳烃很好地运载在固体载体上。
二、实验部分
1.实验原理
间苯二酚杯环状缩合物,是由四个苯环通过一个碳桥彼此相连而成的杯环状结构,分子中存在八个游离的羟基。Resorcinarenes 的合成无需放样或高稀释技术, 常采用间苯二酚与醛在无机酸如盐酸或 Lewis 酸催化下一步法直接合成,且能得到较好的收率。
一步法催化反应机理都是以酸作媒介采用端基亲电取代法的缩合反应,本文中采用的是较为简易的一步法,合成路线如下(图2-1):
图2-1一步法合成路线
2.实验仪器及实验药品
2.1实验仪器
2.2实验药品
3.实验方法
根据相关文献,可以得知当反应物物料比,溶液比例,反应条件与时间改变都可能导致产率的不同。而本文的重点就在于根据文献设计实验方案,再根据实验结果对条件的改进,通过实验对比进行研究,诸如反应物的比例,溶剂比例,反应条件的改变,分析结果,得到最好的实验方案。
而之前查过的文献中,在催化剂方面,据邓旭忠与杨世柱做过的论文资料,他们采用的是浓盐酸,收率高。而用其它酸作催化剂时,收率较低甚至影响产品的质量。因为相关内容已有人研究,而实验室中浓盐酸最为普遍与常用,故在本文不对催化剂的影响作讨论研究,本文中的催化剂都为浓盐酸。
3.1物料比对比实验
将11.01 g间苯二酚(0.1mol)和呋喃甲醛分别按1.3、1.2、1.1、1.0的比例称量出来。先将间苯二酚加入到150mL锥形瓶中,加入乙醇、水(按乙醇、水、盐酸10:9:1配方要求,总体积为100mL),磁力搅拌溶解。在冷水浴冷却下滴加呋喃甲醛,慢慢升温至所需温度(70℃),反应一定时间后(约4小时)冷却抽滤,水洗。将滤饼经稀醇洗涤,充分搅拌过滤(重复两次),80℃干燥得黑色粉末晶体。
3.2反应溶剂比对比实验
反应溶剂比对比实验时进行五组实验对比。将11.01 g间苯二酚(0.1mol)和呋喃甲醛按1:1的比例称量出来,乙醇、水、盐酸按15:0:5、16:0:4、16:2:2、7:10:3和10:9:1的比例加入,总体积为100mL,磁力搅拌溶解。在冷水浴冷却下滴加呋喃甲醛,慢慢升温至温度(70℃),反应一定时间后(约4小时)冷却抽滤,水洗。将滤饼经稀醇洗涤,充分搅拌过滤(重复两次),80℃干燥得黑色粉末晶体,计算产率。
3.3反应温度对比实验
反应温度对比实验时进行四组实验对比。将11.01 g间苯二酚(0.1mol)和呋喃甲醛按1:1的比例称量出来,先将间苯二酚加入到150mL锥形瓶中,加入乙醇、水(按乙醇、水、盐酸10:9:1配方要求,总体积为100mL),磁力搅拌溶解。在冷水浴冷却下滴加呋喃甲醛,四组实验在升温时改变温度,分别设定为60℃、65℃、70℃和75℃,反应一定时间后(约4小时)冷却抽滤,水洗。将滤饼经稀醇洗涤,充分搅拌过滤(重复两次),80℃干燥得黑色粉末晶体,计算产率。
3.4反应时间对比实验
反应时间对比实验需四组实验。将11.01 g间苯二酚(0.1mol)和呋喃甲醛按1:1的比例称量出来,先将间苯二酚加入到150mL锥形瓶中,加入乙醇、水(按乙醇、水、盐酸10:9:1配方要求,总体积为100mL),磁力搅拌溶解。在冷水浴冷却下滴加呋喃甲醛,四组实验的反应时间分别为2小时、3小时、4小时、5小时,反应后冷却抽滤,水洗。将滤饼经稀醇洗涤,充分搅拌过滤(重复两次),80℃干燥得黑色粉末晶体,计算产率。
3.5滴加速度对比实验
将11.01 g间苯二酚(0.1mol)和呋喃甲醛分别按1:1的比例称量出来,准备三组实验。实验步骤如上,只是在冷水浴冷却下滴加呋喃甲醛时分别以3秒/滴、2秒/滴和0.5秒/滴,观察现象。第一组和第二组实验都可以得到产品,且产率相差不大,只是第三组实验在反应过程中反应物颜色会急剧变黑,并最终产生高聚物,使反应失败。
三、结果与讨论
本文对反应时间及其它反应条件进行了讨论,根据实验部分得到的结果进行讨论总结,主要讨论了物料比、反应溶剂比、反应温度、反应时间、滴加速度对合成杯芳烃母体收率的影响。
1.物料比
应条件:催化剂为浓HCl,反应时间4h,温度70℃。
由上表可以看出,当酚醛的物料比为1:1时,收率最佳,达到了53.6%;当物料比超过1:1时,产率会逐渐降低,甚至形成高聚物,与相关的文献资料报导一致。(见表1)
2.反应溶剂比
经过多次实验结果发现,反应溶剂配比对缩合反应影响甚大,在无水乙醇中加浓盐酸作为反应液易聚合成高聚物,而且酸浓度越高越容易聚合。酸浓度太低或乙醇含量过小则产率会减小,当乙醇、水和浓盐酸的比例为10:9:1时的产率最高,达到了53.6%。
3.反应温度
经过合成实验,发现以70℃时析出的产品产率最高,见表2。
反应条件:催化剂为浓HCl,反应时间4h。
上述实验结果表明:实验从60℃开始进行反应,直至75℃,随着反应时间的延长,产率会有所增加,在70℃时产率最好,为53.6%。此后产率不再随温度增加,反而有所减少。
4.反应时间
从表中可以看出,反应的时间从2小时到4小时,得到的产率是各不相同的。刚开始随着反应时间的增长,反应收率会有收增大,但在反应4h后,收率趋向于稳定。
5.滴加速度
查了相关文献,滴加速度控制在2秒/滴为好,均匀滴入半小时,实验中没有出现异常情况。
四、总 结
本文主要应用了间苯二酚与呋喃甲醛采用一步合成法,合成杯[4]芳烃化合物,分析结果如下:
虽然合成实验较为简单,不过实验中物料比、反应溶剂比、反应温度、反应时间、滴加速度对实验结果的影响甚大,因此要对实验进行较为仔细的对比,才可得出最佳的实验方案。
1.物料比对产物收率影响很大,当物料比为1:1时,反应的产率最高。
2.反应温度要控制好,如果温度过高,容易形成高聚物而使实验失败,如果温度过低,则会影响产率和延长反应时间,实验最好的条件为70℃。
3.反应时间要重复实验,得出最好的反应时间,最佳的反应时间为4h,少于4h或超过4h都会影响反应的进度或结果。
4.溶剂的配比也是一个问题,参考以前的文献与资料,溶剂的配比不一,没有一个统一的数字,因此,在这个实验中,要进行反复的实验与操作,最后得到的结果是按乙醇、水、盐酸10:9:1配方要求,得到的结果最好。
5.滴加速度对实验的影响不是很大,不过还是要注意,如果搅拌不均匀而滴加的速度过快,则会影响反应,形成高聚物,控制在2秒/滴。
参考文献:
[1]邓旭忠,杨世荣.Resorcinarenes 的合成及其化学边缘修饰(Ⅱ)[J].合成化学,2000,8(5):457-459;465.
[2]邓旭忠,杨世荣.Resorcinarenes 的合成及其化学边缘修饰(Ⅰ)[J].合成化学,2000,8(5):457-465.
[3]张利,傅成武.杯芳烃超分子化学的研究进展[J].大同职业技术学院学报,2000,14(2):81-83;86.
[4]張来新等.杯芳烃的产生发展及应用[J].宝鸡文理学院学报(自然科学版),1998,18(3):32-36.
[5]何花.杯芳烃—第三代超分子[J].西昌师范高等专科学校学报,2009(3):57-61.
[6]赵芳,梁斌,刘道杰.杯芳烃催化的研究进展[J].信阳师范学院学报(自然科学版),2006,19(3),364-367.
[7]王键吉,刘文彬,卓克垒,卢锦梭.杯芳烃应用研究的新进展[J].化学通报,1996(2):11-17.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文
最后得到的最佳实验方案为:呋喃甲醛与间苯二酚的物料比为1:1,溶剂中乙醇、水、盐酸按10:9:1的比例配比,反应温度设定为70℃,最佳的反应时间为4h,滴加速度为2秒/滴。
关键词:杯芳烃 呋喃甲基杯[4]间苯二酚芳烃 合成
杯芳烃是一类具有独特空穴结构的大环化合物,是继冠醚和环糊精之后的第三代超分子主体化合物。以其易修饰、空腔大小可调、对离子或分子客体均能识别等特性,日益受到人们的重视。功能化杯芳烃在生命科学、分离技术等领域有广阔的应用前景。近年来,国内外化学界对此研究异常活跃。
一、题目研究的目的
杯芳烃自从被发现,在长时间的研究与探索后,实现了工业上的实际应用,具体有如下情况:
1.金属离子的回收
最早的应用是Izatt等利用杯芳烃的液膜传输性能从核废料中回收金属铯[1,2]。回收装置包括三个液相:第一个液相为含大量均裂变的降解产物的强碱性水溶液,用作源相,其中有铯;第二相为一定比例的二氯甲烷和四氯化碳组成有机液膜相,1mM的杯[8]芳烃溶于其中;第三相为二次蒸馏水,用作吸收相。Cs+通过第二相从第一相进入第三相,达到回收的目的[3]。
2.相转移催化
和冠醚、环糊精一样,许多杯芳烃及其衍生物具有萃取和转移金属离子的能力,因此,其在相转移催化研究方面有潜在的应用价值。早在1977年,BurkiS等就发现,下缘连有乙氧基链的对叔丁基杯芳烃在非极性介质中具有相转移催化能力,可以解决油一水乳化问题。与常用的相转移催化剂比较,杯芳烃催化剂的用量更小,反应时间更短,活性更高,像苄溴和苯酚在碱的作用下生成苯甲基苯醚的反应[4]。
3.模拟酶
杯芳烃及其衍生物还可以作为人工酶模型模拟生物酶的催化功能。Ungaro等将冠醚杯芳烃成功的用作水解酶模型。他们发现,冠醚杯芳烃对乙酸酷的甲醇解在没有金属离子存在时反应极慢,但在加入少量的Ba2+后可以使反应加速一百万倍以上,效率己与转酰化酶相当[5]。
我国的陈淑华研究组设计并合成了一系列杯[n]芳烃——单、双卟啉多部位识别受体(n=4,6)。它们对金属离子有优良的识别配位能力[6]。
4.有机材料稳定剂
由于杯芳烃的热稳定性及非挥发性使它的衍生物可用于塑料,橡胶等的抗氧化剂以及光稳定剂。例如杯芳烃的亚磷酸酷已用作聚合物的热稳定剂,对叔丁基杯[4]芳烃也可用作聚烯烃的光稳定剂和热稳定剂[7]。
5.污染控制
未修饰的杯芳烃可用来除去一些有机化学物,特别是极性碳氢化合物如卤化烃。
从1908年以来,普遍采用氯气处理来改善饮用水及工业用水的微生物质量。然而在1974年,人们发现这种水处理法带来了氯与腐殖和灰黄霉酸的副反应。结果产生了三卤甲烷,如有溴离子存在,还可形成二氯溴甲烷,氯二溴甲烷及溴仿。它们具有致癌作用,并经常致人染毒。
Wainwright等发现对叔丁基杯[4]芳烃对三餐甲烷有显著的螯合作用,并且反应很快。产生的包结化合物有相对高的稳定性。为了获得在固相条件下更好的反应活性,必须把杯芳烃很好地运载在固体载体上。
二、实验部分
1.实验原理
间苯二酚杯环状缩合物,是由四个苯环通过一个碳桥彼此相连而成的杯环状结构,分子中存在八个游离的羟基。Resorcinarenes 的合成无需放样或高稀释技术, 常采用间苯二酚与醛在无机酸如盐酸或 Lewis 酸催化下一步法直接合成,且能得到较好的收率。
一步法催化反应机理都是以酸作媒介采用端基亲电取代法的缩合反应,本文中采用的是较为简易的一步法,合成路线如下(图2-1):
图2-1一步法合成路线
2.实验仪器及实验药品
2.1实验仪器
2.2实验药品
3.实验方法
根据相关文献,可以得知当反应物物料比,溶液比例,反应条件与时间改变都可能导致产率的不同。而本文的重点就在于根据文献设计实验方案,再根据实验结果对条件的改进,通过实验对比进行研究,诸如反应物的比例,溶剂比例,反应条件的改变,分析结果,得到最好的实验方案。
而之前查过的文献中,在催化剂方面,据邓旭忠与杨世柱做过的论文资料,他们采用的是浓盐酸,收率高。而用其它酸作催化剂时,收率较低甚至影响产品的质量。因为相关内容已有人研究,而实验室中浓盐酸最为普遍与常用,故在本文不对催化剂的影响作讨论研究,本文中的催化剂都为浓盐酸。
3.1物料比对比实验
将11.01 g间苯二酚(0.1mol)和呋喃甲醛分别按1.3、1.2、1.1、1.0的比例称量出来。先将间苯二酚加入到150mL锥形瓶中,加入乙醇、水(按乙醇、水、盐酸10:9:1配方要求,总体积为100mL),磁力搅拌溶解。在冷水浴冷却下滴加呋喃甲醛,慢慢升温至所需温度(70℃),反应一定时间后(约4小时)冷却抽滤,水洗。将滤饼经稀醇洗涤,充分搅拌过滤(重复两次),80℃干燥得黑色粉末晶体。
3.2反应溶剂比对比实验
反应溶剂比对比实验时进行五组实验对比。将11.01 g间苯二酚(0.1mol)和呋喃甲醛按1:1的比例称量出来,乙醇、水、盐酸按15:0:5、16:0:4、16:2:2、7:10:3和10:9:1的比例加入,总体积为100mL,磁力搅拌溶解。在冷水浴冷却下滴加呋喃甲醛,慢慢升温至温度(70℃),反应一定时间后(约4小时)冷却抽滤,水洗。将滤饼经稀醇洗涤,充分搅拌过滤(重复两次),80℃干燥得黑色粉末晶体,计算产率。
3.3反应温度对比实验
反应温度对比实验时进行四组实验对比。将11.01 g间苯二酚(0.1mol)和呋喃甲醛按1:1的比例称量出来,先将间苯二酚加入到150mL锥形瓶中,加入乙醇、水(按乙醇、水、盐酸10:9:1配方要求,总体积为100mL),磁力搅拌溶解。在冷水浴冷却下滴加呋喃甲醛,四组实验在升温时改变温度,分别设定为60℃、65℃、70℃和75℃,反应一定时间后(约4小时)冷却抽滤,水洗。将滤饼经稀醇洗涤,充分搅拌过滤(重复两次),80℃干燥得黑色粉末晶体,计算产率。
3.4反应时间对比实验
反应时间对比实验需四组实验。将11.01 g间苯二酚(0.1mol)和呋喃甲醛按1:1的比例称量出来,先将间苯二酚加入到150mL锥形瓶中,加入乙醇、水(按乙醇、水、盐酸10:9:1配方要求,总体积为100mL),磁力搅拌溶解。在冷水浴冷却下滴加呋喃甲醛,四组实验的反应时间分别为2小时、3小时、4小时、5小时,反应后冷却抽滤,水洗。将滤饼经稀醇洗涤,充分搅拌过滤(重复两次),80℃干燥得黑色粉末晶体,计算产率。
3.5滴加速度对比实验
将11.01 g间苯二酚(0.1mol)和呋喃甲醛分别按1:1的比例称量出来,准备三组实验。实验步骤如上,只是在冷水浴冷却下滴加呋喃甲醛时分别以3秒/滴、2秒/滴和0.5秒/滴,观察现象。第一组和第二组实验都可以得到产品,且产率相差不大,只是第三组实验在反应过程中反应物颜色会急剧变黑,并最终产生高聚物,使反应失败。
三、结果与讨论
本文对反应时间及其它反应条件进行了讨论,根据实验部分得到的结果进行讨论总结,主要讨论了物料比、反应溶剂比、反应温度、反应时间、滴加速度对合成杯芳烃母体收率的影响。
1.物料比
应条件:催化剂为浓HCl,反应时间4h,温度70℃。
由上表可以看出,当酚醛的物料比为1:1时,收率最佳,达到了53.6%;当物料比超过1:1时,产率会逐渐降低,甚至形成高聚物,与相关的文献资料报导一致。(见表1)
2.反应溶剂比
经过多次实验结果发现,反应溶剂配比对缩合反应影响甚大,在无水乙醇中加浓盐酸作为反应液易聚合成高聚物,而且酸浓度越高越容易聚合。酸浓度太低或乙醇含量过小则产率会减小,当乙醇、水和浓盐酸的比例为10:9:1时的产率最高,达到了53.6%。
3.反应温度
经过合成实验,发现以70℃时析出的产品产率最高,见表2。
反应条件:催化剂为浓HCl,反应时间4h。
上述实验结果表明:实验从60℃开始进行反应,直至75℃,随着反应时间的延长,产率会有所增加,在70℃时产率最好,为53.6%。此后产率不再随温度增加,反而有所减少。
4.反应时间
从表中可以看出,反应的时间从2小时到4小时,得到的产率是各不相同的。刚开始随着反应时间的增长,反应收率会有收增大,但在反应4h后,收率趋向于稳定。
5.滴加速度
查了相关文献,滴加速度控制在2秒/滴为好,均匀滴入半小时,实验中没有出现异常情况。
四、总 结
本文主要应用了间苯二酚与呋喃甲醛采用一步合成法,合成杯[4]芳烃化合物,分析结果如下:
虽然合成实验较为简单,不过实验中物料比、反应溶剂比、反应温度、反应时间、滴加速度对实验结果的影响甚大,因此要对实验进行较为仔细的对比,才可得出最佳的实验方案。
1.物料比对产物收率影响很大,当物料比为1:1时,反应的产率最高。
2.反应温度要控制好,如果温度过高,容易形成高聚物而使实验失败,如果温度过低,则会影响产率和延长反应时间,实验最好的条件为70℃。
3.反应时间要重复实验,得出最好的反应时间,最佳的反应时间为4h,少于4h或超过4h都会影响反应的进度或结果。
4.溶剂的配比也是一个问题,参考以前的文献与资料,溶剂的配比不一,没有一个统一的数字,因此,在这个实验中,要进行反复的实验与操作,最后得到的结果是按乙醇、水、盐酸10:9:1配方要求,得到的结果最好。
5.滴加速度对实验的影响不是很大,不过还是要注意,如果搅拌不均匀而滴加的速度过快,则会影响反应,形成高聚物,控制在2秒/滴。
参考文献:
[1]邓旭忠,杨世荣.Resorcinarenes 的合成及其化学边缘修饰(Ⅱ)[J].合成化学,2000,8(5):457-459;465.
[2]邓旭忠,杨世荣.Resorcinarenes 的合成及其化学边缘修饰(Ⅰ)[J].合成化学,2000,8(5):457-465.
[3]张利,傅成武.杯芳烃超分子化学的研究进展[J].大同职业技术学院学报,2000,14(2):81-83;86.
[4]張来新等.杯芳烃的产生发展及应用[J].宝鸡文理学院学报(自然科学版),1998,18(3):32-36.
[5]何花.杯芳烃—第三代超分子[J].西昌师范高等专科学校学报,2009(3):57-61.
[6]赵芳,梁斌,刘道杰.杯芳烃催化的研究进展[J].信阳师范学院学报(自然科学版),2006,19(3),364-367.
[7]王键吉,刘文彬,卓克垒,卢锦梭.杯芳烃应用研究的新进展[J].化学通报,1996(2):11-17.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文