论文部分内容阅读
“去繁存精”的光谱数据解耦方法可去除高维光谱数据的大量冗余,提炼其特征谱段,是光谱仪器得以广泛应用的重要基础。应用各异性和光谱特征优选方法普适性所构成的矛盾,在一定程度上制约了光谱仪器的应用。本文提出了序列前向选择(Sequential forward selection ,SFS)的光谱特征自适应数据挖掘方法,生成最优变量组合作为支持向量机(Support vector machine ,SVM )分类模型的输入,在对光谱数据降维的同时,实现了高精度的数据分类。本文方法可有效解决大量光谱数据的多类分类问