改进的线性局部切空间排列算法

来源 :计算机应用 | 被引量 : 6次 | 上传用户:zgkl004
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
线性局部切空间排列算法(LLTSA)是一种能很好地适用于识别问题的非线性降维方法,但LLTSA仅仅关注了数据的局部几何结构,而没有体现数据的整体信息。提出了一种基于主成分分析(PCA)改进的线性局部切空间排列算法(P-LLTSA),该算法在LLTSA的基础上,考虑了样本的全局结构,进而得到更好的降维效果。在经典的三维流形和在MNIST图像库手写体识别的实验中,识别率较PCA、局部保持投影算法(LPP),LLTSA有明显提高,证实了该算法在识别问题中的有效性。
其他文献
非负矩阵分解(NMF)作为一种特征提取与数据降维的新方法,相较于一些传统算法,具有实现上的简便性,分解形式和分解结果上的可解释性等优点。但当样本矩阵不完备时,NMF无法对其进行直接分解。提出一种基于加权的不完备非负矩阵分解(NMFI)算法,该算法在处理不完备样本矩阵时,先采用随机修复的方法降低误差,再利用加权来控制各样本的权重,尽量削弱缺损数据对分解结果产生的干扰。此外,NMFI算法使用区域权重来
为了进一步完善自动图像标注方法,提出基于高斯混合模型的自动图像标注方法。该方法通过建立每个关键词唯一的高斯混合模型(GMM),准确地描述关键词的语义内容,进而提高自动图像标注的精确性。最后,通过采用COREL图像数据集与不同方法的比较,从平均查准率、平均查全率的实验结果验证了该方法的有效性。
2012年12月29日至30日,中共中央总书记、中央军委主席习近平到河北省阜平县看望慰问困难群众,考察扶贫开发工作.在地处深山的龙泉关镇骆驼湾村困难群众唐荣斌家、唐宗秀家,习
期刊